ColorCorrectionAnalyzer
class¶
ColorCorrectionAnalyzer
¶
Analyzer for benchmarking color correction methods.
This class combines multiple correction and detection techniques to analyze the performance of color correction models by comparing patches and overall image differences.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
list_correction_methods
|
list of tuple[LiteralModelCorrection, dict]
|
A list of tuples, where each tuple contains a correction method identifier and its parameters. |
required |
list_detection_methods
|
list of tuple[LiteralModelDetection, dict]
|
A list of tuples, where each tuple contains a detection method identifier and its parameters. |
required |
use_gpu
|
bool
|
Flag to indicate whether GPU is used, by default False. |
False
|
Source code in color_correction/services/correction_analyzer.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
|
Functions¶
run
¶
run(input_image: np.ndarray, output_dir: str = 'benchmark_debug', reference_image: np.ndarray | None = None) -> pd.DataFrame
Run the full benchmark for color correction and generate reports.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_image
|
np.ndarray
|
The image to be processed. |
required |
output_dir
|
str
|
The directory to save reports, by default |
'benchmark_debug'
|
reference_image
|
np.ndarray
|
Optional reference image used for evaluation, by default None. |
None
|
Returns:
Type | Description |
---|---|
pd.DataFrame
|
A DataFrame containing results of all experiments. |
Notes
The specified output directory will be created if it does not exist. All benchmark results are saved in this folder. The directory to save benchmark results, by default "benchmark_debug". This folder will contain:
- An HTML report: includes a matrix table showing correction methods vs. evaluation delta E (CIE 2000) and preview images.
- A CSV file: A CSV report of the DataFrame with image data columns removed.
- A PKL file: A pickle file containing the full DataFrame.
Examples:
>>> import numpy as np
>>> from color_correction.services.correction_analyzer import ColorCorrectionAnalyzer
>>>
>>> # Assume input_image is a numpy array of shape (H, W, C)
>>> input_image = np.random.rand(100, 100, 3)
>>> analyzer = ColorCorrectionAnalyzer(
... list_correction_methods=[
... ("least_squares", {}),
... ("linear_reg", {}),
... ("affine_reg", {}),
... ("polynomial", {"degree": 2})
... ("polynomial", {"degree": 3})
... ("polynomial", {"degree": 4})
... ],
... list_detection_methods=[("yolov8", {"detection_conf_th": 0.25})],
... )
>>> results = analyzer.run(input_image=input_image, output_dir="output")
>>> print(results.head())
Source code in color_correction/services/correction_analyzer.py
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
|