Computer Vision: Image Classification (End-to-End)
Just an Example Post
This is just an example post. Don't take it too seriously!
This documentation provides a complete guide for building an image classification system using modern computer vision techniques, from data preparation to deployment.
Introduction
This guide focuses on creating an end-to-end image classification pipeline, leveraging popular frameworks like PyTorch, TensorFlow, and ONNX. The steps include loading datasets, training models, evaluating performance, and deploying the system.
Workflow Overview
- Data Preparation: Dataset curation, augmentation, and preprocessing.
- Model Training: Training a neural network on the dataset.
- Evaluation: Measuring the model's performance using metrics like accuracy, F1 score, etc.
- Deployment: Hosting the trained model for inference via APIs or web services.
Setup
System Requirements
- Python: >= 3.8
- Dependencies: PyTorch, torchvision, TensorFlow, OpenCV, FastAPI, ONNX Runtime
- Hardware: GPU (NVIDIA CUDA) for training, CPU/GPU for inference
Installation
-
Clone the repository:
-
Install required libraries:
-
Verify installation:
Step-by-Step Guide
1. Data Preparation
- Organize your dataset:
- Preprocess images using OpenCV or torchvision transforms:
2. Model Training
Train a model using PyTorch:
import torch
import torchvision.models as models
model = models.resnet50(pretrained=True)
model.fc = torch.nn.Linear(2048, num_classes) # Replace final layer
# Training loop
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = torch.nn.CrossEntropyLoss()
for epoch in range(num_epochs):
for images, labels in dataloader:
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
3. Evaluation
Evaluate the model:
from sklearn.metrics import classification_report
# Get predictions
predictions = []
ground_truth = []
model.eval()
with torch.no_grad():
for images, labels in val_dataloader:
outputs = model(images)
_, preds = torch.max(outputs, 1)
predictions.extend(preds.cpu().numpy())
ground_truth.extend(labels.cpu().numpy())
print(classification_report(ground_truth, predictions, target_names=class_names))
4. Deployment
Export the model to ONNX for optimized inference:
dummy_input = torch.randn(1, 3, 224, 224) # Example input size
torch.onnx.export(model, dummy_input, "model.onnx", opset_version=11)
Deploy using FastAPI:
from fastapi import FastAPI, File, UploadFile
import onnxruntime as ort
import numpy as np
from PIL import Image
app = FastAPI()
session = ort.InferenceSession("model.onnx")
@app.post("/predict/")
async def predict(file: UploadFile = File(...)):
image = Image.open(file.file).resize((224, 224))
input_array = np.expand_dims(np.array(image).astype(np.float32) / 255.0, axis=0)
result = session.run(None, {"input": input_array})
return {"prediction": np.argmax(result)}
APIs and Inference
Starting the API Server
Run the FastAPI app:
Access the API documentation at http://127.0.0.1:8000/docs.
Test Inference
Send an image to the endpoint: